Adapting a model of sediment consolidation for use in marsh thin layer placement projects

Susan Bailey, Zachary Tyler, Tim Welp US Army Engineer Research and Development Center

National **Conference** on Ecosystem Restoration 30 August 2018

rps U.S.ARM

Innovative solutions for a safer, better world

Project: Quantification of DM Layer Thickness over Time as Applied in TLP Wetland Nourishment Projects

- Sponsor: USACE Dredging Operations and Environmental Research (DOER) program (<u>https://doer.el.erdc.dren.mil/</u>)
- Team: Susan Bailey, Zachary Tyler, Tim Welp, Paul Schroeder
- Objectives
 - Develop understanding of impacts of wetland processes on consolidation
 - Vegetation
 - Fluctuating water tables
 - Improve tools (PSDDF) to model DM elevation over time following TLP
- Approach
 - Laboratory experimentation
 - Field verification

Dominant Processes that Control Marsh Elevation over Time

Conceptual marsh topography changes as a result of DM placement and consolidation

- 1. Existing (pre-placement) marsh surface (solid green line)
- 2. Place DM slurry to initial fill elevation (solid tan line)
- 3. Over time, the DM consolidates (dotted tan line)
- 4. Original marsh surface also consolidates (dotted green line) due to weight of placed DM

Initial Settling

- Column settling test

- 6 ft tall, 8-in diameter
- Record sediment-water interface over 15 days
- Sample supernatant for water quality data (TSS/flocculant settling)

SETTLE model

Sediment - water interface

Sample

ports

Consolidation Modeling - PSDDF

- Primary consolidation, Secondary compression and Desiccation of Dredged Fill
 - Models longer term consolidation
- Uses data from laboratory consolidation tests
 - Self weight (DM only)
 - Standard oedometer (DM & Foundation)
- Other primary input
 - Void ratio & thickness at end of placement (SETTLE)
 - Climate data
 - Water table elevation
 - Soil parameters

1E+05

PSDDF Model designed for DISPOSAL...not TLP

Confined Disposal Facility

- Containment for DM slurry
- Designed for recurring placement
- Assumed no significant vegetation
- Thick deposits, large tolerances
- Water table assumed constant
- PSDDF validated

Thin Layer Placement/Marsh

- Maybe containment
- Designed for one-time placement
- Vegetation reestablishment
- Thin deposits, tighter tolerance
- May be tidally influenced
- PSDDF not validated

Model Deficiencies?? Need to evaluate model optimization to account for wetland processes.

Field Study Avalon, NJ

- USACE Philadelphia
 District pumped sediment
 from the navigation
 channel to ~35 acres
 marsh between Nov 2015
 – Feb 2016
- Thicknesses ranged from a few cm to ~0.5 m in pools

0.15

0.6 Kilometers

Field Study Avalon, NJ

- Surveys
 - March 2016; June 2016; June 2017
- Core samples in Area E: June 2016, June 2017
 - DM thickness
 - DM composition (grain size, organic content)
 - Void ratio vs. depth
- Piezometers
 - Nested piezometers in 4 locations
 - Data loggers deployed Jun Sep 2016, 2017

Laboratory Evaluation – Vegetation Impacts

- Conducted in 30 gal drums
- Sediment from Pascagoula, MS
- Simulated DM placement on vegetation

Lift 1	Lift 2
Aug 2017	June 2018
12" lift	4 drums 6" 6 drums 16"
6 veg / 4 not	2 replanted

(2 Reps)

Laboratory Evaluation – Impacts of Water Level

- Conducted in 30 gal drums
- Sediment from Pascagoula, MS

Results

- Data analysis FY19
- Based on preliminary results
 - consolidation endpoint not likely to be impacted by these processes
 - rate of consolidation is impacted
- Run models and compare results
- Reports FY19/FY20 https://doer.el.erdc.dren.mil/
- Additional field validation

Summary

- Modeling consolidation is important design component to reach target elevation
- Need to understand how the marsh surface will behave over time
- Existing tools to predict elevation change over time
- Working to improve modeling to account for wetland processes
- Will have results from lab and field studies FY19
- Could use additional field validation

